Acyclic edge coloring of 2-degenerate graphs

نویسندگان

  • Manu Basavaraju
  • L. Sunil Chandran
چکیده

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). A graph is called 2-degenerate if any of its induced subgraph has a vertex of degree at most 2. The class of 2-degenerate graphs properly contains series–parallel graphs, outerplanar graphs, non-regular subcubic graphs, planar graphs of girth at least 6 and circle graphs of girth at least 5 as subclasses. It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a′(G)≤ +2, where = (G) denotes the maximum degree of the graph. We prove the conjecture for 2-degenerate graphs. In fact we prove a stronger bound: we prove that if G is a 2-degenerate graph with maximum degree , then a′(G)≤ +1. 2010 Wiley Periodicals, Inc. J Graph Theory 69: 1–27, 2012

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new approach to compute acyclic chromatic index of certain chemical structures

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerfu...

متن کامل

Acyclic Chromatic Index of Fully Subdivided Graphs and Halin Graphs

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). A graph G is called fully subdivided if it is obtained from another graph H by replacing every edge by a path of length at least two. Fully subdi...

متن کامل

Acyclic Edge Colouring of Partial 2-Trees

An acyclic edge colouring of a graph is a proper edge colouring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge colouring using k colours and it is denoted by a′(G). Here, we obtain tight estimates on a′(G) for nontrivial subclasses of the family of 2-degenerate graphs. Specifically, we obtain values of...

متن کامل

Acyclic chromatic index of triangle-free 1-planar graphs

An acyclic edge coloring of a graph G is a proper edge coloring such that every cycle is colored with at least three colors. The acyclic chromatic index χa(G) of a graph G is the least number of colors in an acyclic edge coloring of G. It was conjectured that χa(G) ≤ ∆(G) + 2 for any simple graph G with maximum degree ∆(G). A graph is 1-planar if it can be drawn on the plane such that every edg...

متن کامل

Acyclic edge coloring of planar graphs with Δ colors

An acyclic edge coloring of a graph is a proper edge coloring without bichromatic cycles. In 1978, it was conjectured that ∆(G) + 2 colors suffice for an acyclic edge coloring of every graph G [6]. The conjecture has been verified for several classes of graphs, however, the best known upper bound for as special class as planar graphs are, is ∆+12 [2]. In this paper, we study simple planar graph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Graph Theory

دوره 69  شماره 

صفحات  -

تاریخ انتشار 2012